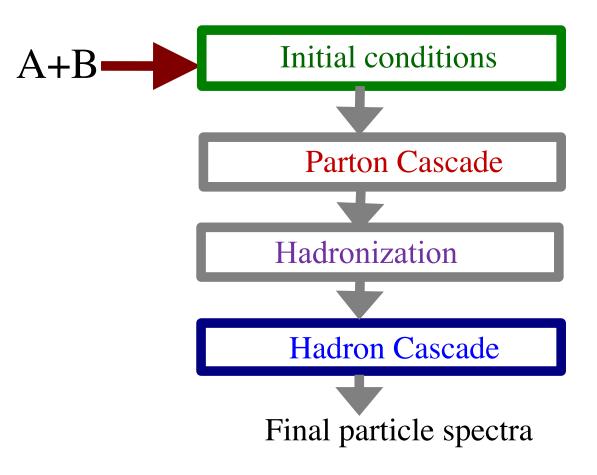

Improving the AMPT Model for Isobar Collisions

Zi-Wei Lin East Carolina University

Outline

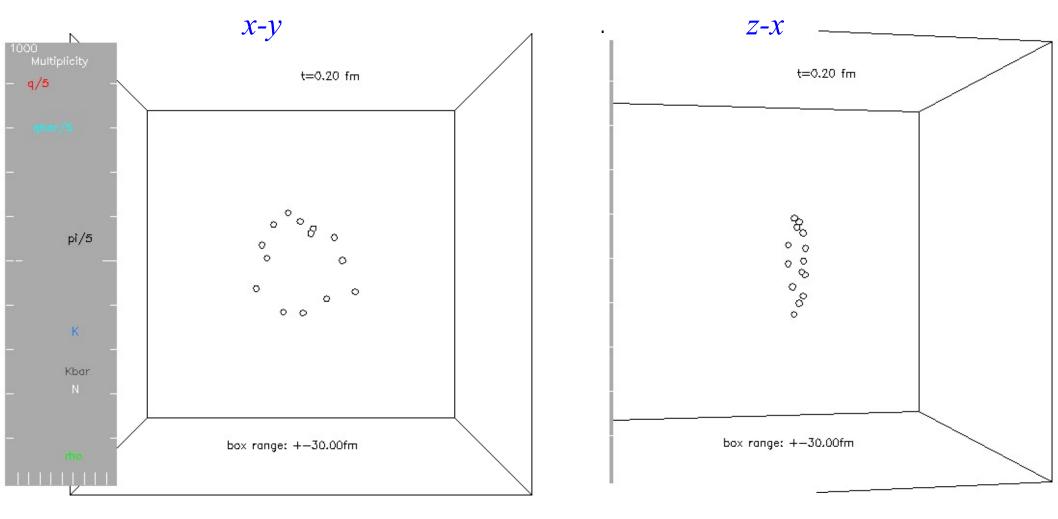

- Introduction of the AMPT model
- Improvements relevant for isobar collisions
 - Incorporation of nucleus of different shapes
 - o Local nuclear scaling and self-consistent system size dependence
 - The new quark coalescence model
 - Implementation of charge conservation
 - Further developments
- Summary

Partly based on a mini-review of recent AMPT developments on Nucl. Sci. Tech. (2021) and collaborations with Guo-Liang Ma, Bedangadas Mohanty, Md. Rihan Haque, Fuqiang Wang, Chao Zhang, Liang Zheng, et al.

A Multi-Phase Transport (AMPT)

Constructed as a self-contained kinetic description of heavy ion collisions

- evolves the system from fluctuating initial conditions to final observables;
- produces particles of all flavours at all P_T & y;
- includes non-equilibrium initial condition & dynamics.



Source codes online since 2004, available at the ECU website http://myweb.ecu.edu/linz/ampt/

ZWL, Ko, Li, Zhang & Pal, PRC (2005); ZWL & Zheng, NST (2021).

A Multi-Phase Transport (AMPT)

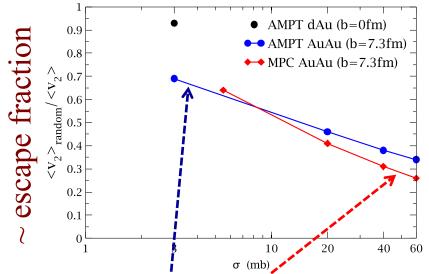
Time evolution of 1 central Au+Au event at 200AGeV from AMPT-SM (the String Melting version, applicable at high energies):

Animations at the ECU website http://myweb.ecu.edu/linz/ampt/

Transport models for finite systems

For large systems at very high energies:

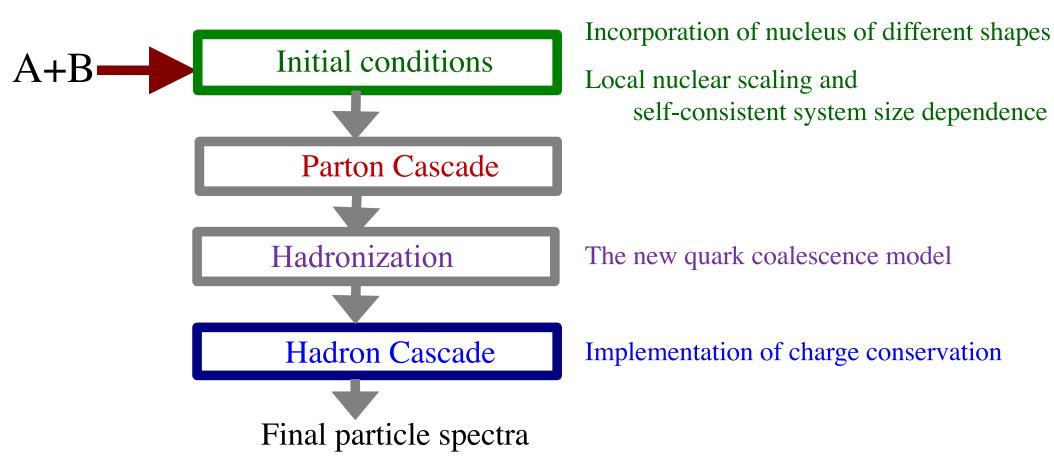
transport model approaches hydrodynamics, transport model (particles, scatterings, microscopic picture) are complementary to hydrodynamics-based models (T_{uv} , EoS, transport coefficients).


• For finite/small systems at finite energies:

non-equilibrium effects can be important, important to develop transport model/kinetic theory & compare with hydrodynamics to understand physics including collectivity of finite size systems.

Heiselberg & Levy, PRC (1999), Borghini et al. EPJC (2018), Kurkela et al. PLB (2018) & EPJC (2019), ...

On example is the escape mechanism: interaction-induced response to anisotropic geometry from kinetic theory.


L He et al. PLB (2016); ZWL et al. NPA (2016); H.L. Li et al. PRC (2019).

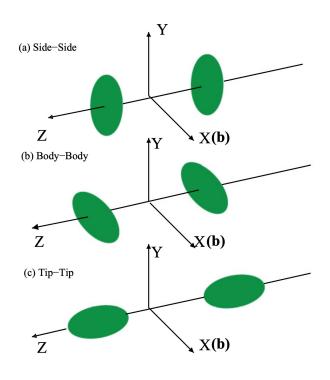
- At very large opacity (large system/energy/σ), hydrodynamic collective flow will dominate v₂
- Escape mechanism dominates v₂ for small systems & even semi-central AuAu @200 GeV.

Improvements relevant for isobar collisions

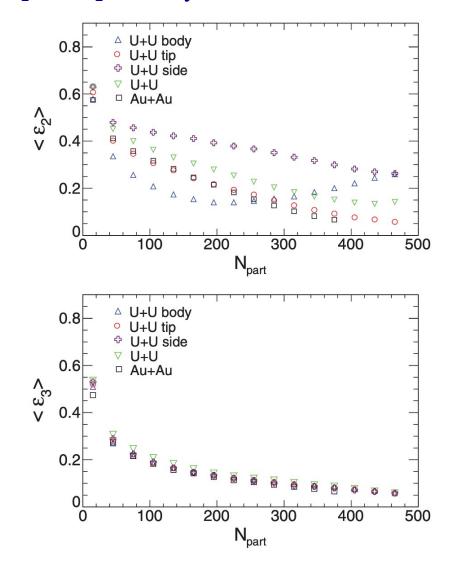
They cover the following AMPT components:

ZWL & Zheng, NST (2021)

Improvements not covered in this talk: updates with modern nPDFs, heavy flavor productions, finite nuclear thickness, pythia8 initial condition with sub-nucleon structure, parton cascade.

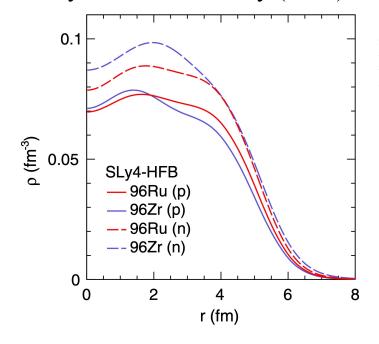

Incorporation of nucleus of different shapes

Rihan Haque, ZWL & Mohanty, PRC (2012)

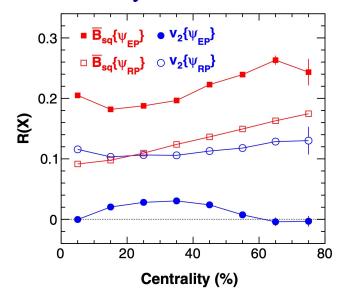

Nucleon density distribution of ²³⁸U in AMPT is parametrized as deformed Woods-Saxon:

$$\rho = \frac{\rho_0}{1 + \exp([r - R']/a)},$$

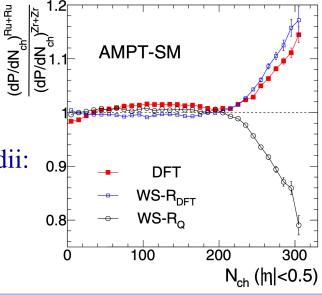
$$R' = R[1 + \beta_2 Y_2^0(\theta) + \beta_4 Y_4^0(\theta)]$$



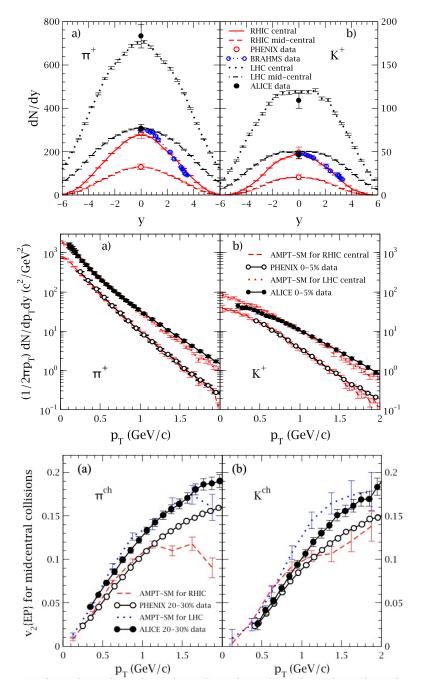
Eccentricity ε_2 and triangularity ε_3 : ε_2 and v_2 are very sensitive to orientation.


Incorporation of nucleus of different shapes

For isobar nuclei in the AMPT initial condition, protons & neutrons are sampled according to radial density distributions from density functional theory (DFT):



H.J. Xu et al. PRL (2018); H.J. Xu's talk on Tuesday


Sizable v₂ difference is found for isobar systems:

Ratio of N_{ch} distributions probes the nuclear mass radii: H.L. Li et al. PRC (2018)

Local nuclear scaling and self-consistent size dependence

String Melting AMPT describes flows and HBT but used to (*before 2014*) fail badly in hadron spectra.

We later realized that the model can simultaneously describe dN/dy, p_T-spectra & v₂ (for bulk matter at low-p_T) in central and mid-central high energy AA collisions, as long as a very small Lund b_L parameter is used.

ZWL, PRC (2014)

Lund symmetric string fragmentation function:

$$f(z) \propto z^{-1} (1-z)^{a_L} e^{-b_L m_{\rm T}^2/z}$$

b_L typical values (in 1/GeV²): 0.5 (AMPT-def), ~0.58 (PYTHIA6.2), 0.9 (HIJING1)

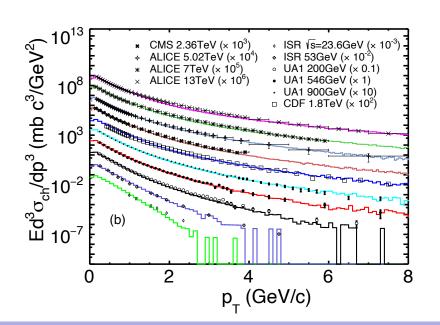
 $b_L \sim 0.15$ is needed for AMPT-SM for high energy AA, corresponds to a much higher string tension:

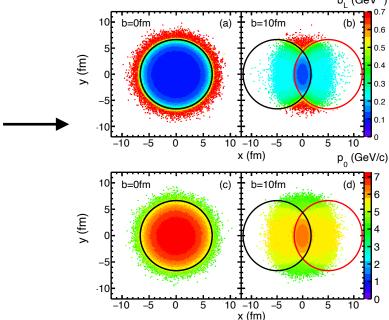
$$\kappa \propto \frac{1}{b_{\rm L}(2+a_{\rm L})}$$
 ZWL et al. PRC (2005)

Local nuclear scaling and self-consistent size dependence

Different values of $\mathbf{b_L}$ are needed for pp and central AA, same for the minijet cutoff scale $\mathbf{p_0}$ (related to saturation scale Q_s in the AMPT model updated with modern nPDFs).

C Zhang et al. PRC (2019); Zheng et al. PRC (2020)


We propose to scale them with local nuclear densities:

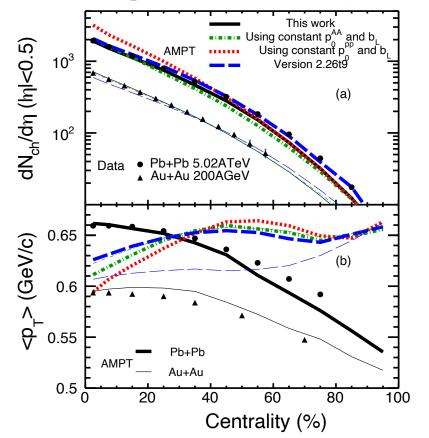

$$b_{L}(s_{A}, s_{B}, s) = \frac{b_{L}^{pp}}{[\sqrt{T_{A}(s_{A})T_{B}(s_{B})}/T_{p}]^{\beta(s)}}$$
PRC (2021)
$$p_{0}(s_{A}, s_{B}, s) = p_{0}^{pp}(s)[\sqrt{T_{A}(s_{A})T_{B}(s_{B})}/T_{p}]^{\alpha(s)}.$$

Similar geometric form preferred for initial entropy deposition:

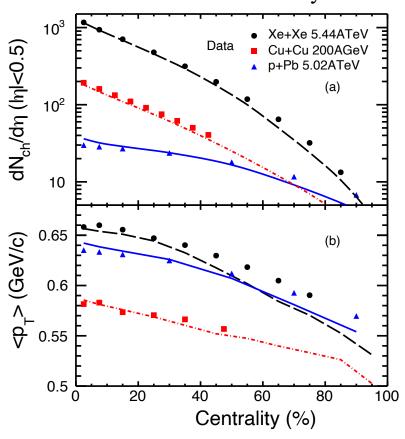
Bernhard et al. PRC (2016)

We fit charged hadrons in pp to determine $b_L^{pp} = 0.7$, then used central AuAu/PbPb data to get $\alpha(s)$, $\beta(s)$:

Pb+Pb $@\sqrt{s} = 5.02$ ATeV


Local nuclear scaling and self-consistent size dependence

The scaling allows AMPT-SM to self-consistently describe the system size dependence, including centrality dependences of AuAu & PbPb and smaller systems.


C Zhang et al. PRC (2021)

Centrality dependences of <pT> are now reasonable,

much better than public AMPT (v2.26t9)

Also works for smaller systems:

Key input parameters of AMPT:

 $a_L b_L p_0$

No longer free parameters

 σ (parton cross section)

 $\rightarrow \eta$... can be better studied

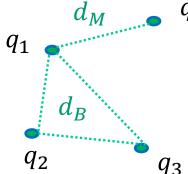
The new quark coalescence model

Old Coalescence

(in public AMPT)

$$q_{\overline{B}}$$
 q_m q_B \overline{q}_m

There is an artificial constraint

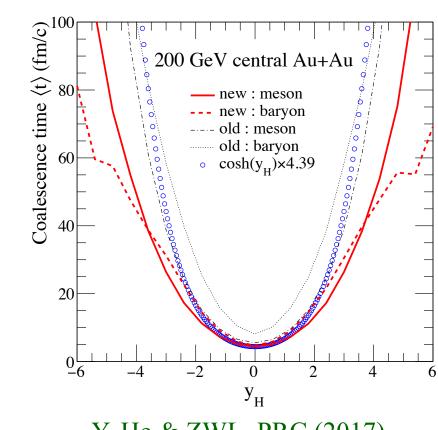

that forces the separate conservation of the numbers of mesons, baryons and antibaryons for each event (while only net-baryon conservation is necessary):

- Quarks from the melting of mesons search all antiquarks and choose the closest antiquark to form mesons.
- Then quarks from the melting of baryons search all remaining quarks and choose the closest two quarks to form baryons (same for anti-baryons).

New coalescence

Y. He & ZWL, PRC (2017)

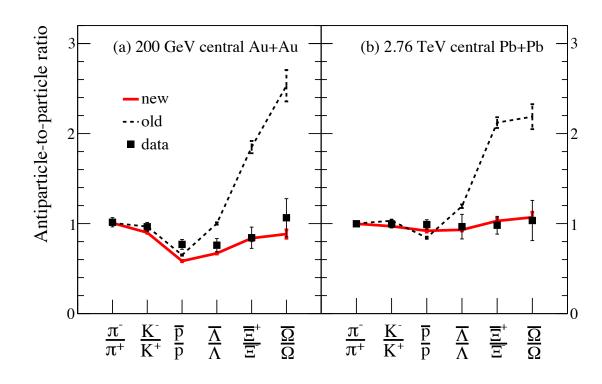
We remove the artificial constraint, quarks now have freedom to form either meson or baryon:


For example, for a quark q_1 :

 d_M : closest distance to an antiquark (in rest frame) d_B : average distance among the 3 quarks after finding closest $q_2 \& q_3$

If $d_B < d_M * r_{BM}$, q_1 will coalesce to a baryon; otherwise, q_1 will coalesce to a meson.

 \rightarrow Single coalescence parameter r_{BM} , ~0.6


The new quark coalescence model

Y. He & ZWL, PRC (2017)

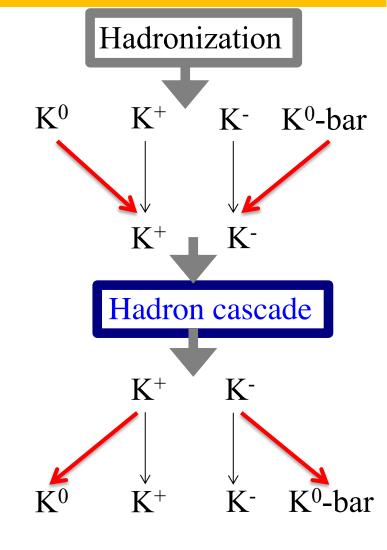
New quark coalescence is more efficient, especially for (anti)baryons.

Improves (anti)baryon observables, including p & pbar yield & p_T—spectra and multi-strange Bbar/B ratios:

Implementation of charge conservation

Why is charge conservation violated in public AMPT?

First reason: The hadron cascade has K⁺ and K⁻ as explicit particles, but not K⁰ and K⁰-bar.


Currently, to let all kaons interact:

- before hadron cascade, we change K⁰ to K⁺ (also: K⁰-bar to K⁻)
- after hadron cascade, we change half of final K⁺ into K⁰.

Second reason:

Many reactions in the hadron cascade are not implemented for each possible isospin/charge state

→ Need to identify & correct each such reaction while respecting detailed balance relations

This work has been done in a version of AMPT:

Z.W. Lin & G.L. Ma, unpublished (2018).

This charge-conserved version has been shared with some colleagues for CME studies: Tang, CPC (2020); Choudhury et al. EPJC (2020).

Further developments relevant for isobar collisions

• Further improve the initial condition from HIJING:

There is a small p_z-asymmetry of hadrons in symmetric collisions: this leads to rapidity-asymmetry of final state hadrons, especially antibaryons from public AMPT-SM at low energies (thanks to H.Z. Huan's group for pointing out this issue).

There is an artificial ordering of initial protons and neutrons in the nucleus along the z direction when sampling Woods-Saxon (protons take ~half of the z range & neutrons take the other ~half): this affects the initial net-charge distribution and could affect charge-dependent observables.

- Self-consistent parton transport under electromagnetic fields
- Update the public AMPT model with recent improvements

Summary

AMPT provides a self-contained kinetic description of heavy ion collisions

Recent improvements make AMPT more versatile and reliable:

- Incorporation of deformed or arbitrary nucleon distributions enables studies of isobar collisions.
- New quark coalescence improves baryon & antibaryon productions.
- Implementation of charge conservation improves studies of charge-dependent observables.
- Local nuclear scaling of initial condition parameters significantly reduces uncertainty from free model parameters and enables us to focus on QGP properties like σ (parton cross section, or m_D) and its T-dependence $\leftrightarrow \eta(T)$

Thanks for your attention!